For many recreational runners, taking a jog is a fun way to stay fit and burn calories. But it turns out an individual has a tendency to settle into the same, comfortable pace on short and long runs — and that pace is the one that minimizes their body’s energy use over a given distance.
“I was really surprised,” says Jessica Selinger, a biomechanist at Queen’s University in Kingston, Canada. “Intuitively, I would have thought people run faster at shorter distances and slow their pace at longer distances.”
Selinger and colleagues combined data from more than 4,600 runners, who went on 37,201 runs while wearing a fitness device called the Lumo Run, with lab-based physiology data. The analysis, described April 28 in Current Biology, also shows that it takes more energy for someone to run a given distance if they run faster or slower than their optimum speed.
“There is a speed that for you is going to feel the best,” Selinger says. “That speed is the one where you’re actually burning fewer calories.”
The runners ranged in age from 16 to 83, and had body mass indices spanning from 14.3 to 45.4. But no matter participants’ age, weight or sex — or whether they ran only a narrow range of distances or runs of varying lengths — the same pattern showed up in the data repeatedly.
Researchers have thought that running was performance-driven, says Melissa Thompson, a biomechanist at Fort Lewis College in Durango, Colo., who was not involved in the new study. This new research, she says, is “talking about preference, not performance.”
Most related research, Selinger says, has been done in university laboratories, with study subjects who are generally younger and healthier than the general population. By using wearable devices, the researchers could track many more runs, across more real-life conditions than is possible in a lab. That allowed the scientists to look at a “much broader cross section of humanity,” she says. Treadmill tests measuring energy use at different paces with people representative of those included in the fitness tracker data were used to determine optimum energy-efficient speeds.
Because the study includes a wide range of conditions and doesn’t control for things like fasting before running, it’s messier than data gathered in labs. Still, the sheer volume of real-world runs recorded by the wearable devices supports a convincing general rule about how humans run, says Rodger Kram, a physiologist at the University of Colorado Boulder not involved with the study. “I think the rule’s right.”
The results don’t apply to very long runs when fatigue starts to set in, or to race performance by elite athletes or others consciously training for speed. And a runner’s optimum pace can change over time, with training or age for instance.
There are quick tricks for those who want to speed up and go for a little more calorie burn to temporarily trump their body’s natural inclinations: Listen to upbeat music or jog alongside someone with a faster pace, Selinger says. “But it seems like your preference is actually to sink back into that optimum.”
The results match observations of optimum pacing from animals like horses and wildebeests, and also correspond to the way humans tend to walk at a speed that minimizes their individual energy use (SN: 9/10/15).
It does make sense that humans would be adapted to run at an optimum speed for minimizing energy use, says coauthor Scott Delp, a biomechanist at Stanford University. Imagine being an early human ancestor going out to hunt difficult prey. “It might be days before I get my next food,” he says. “So I want to spend the least energy en route to getting that food.”